Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Brain Commun ; 6(1): fcae007, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38274570

RESUMO

Deep learning has allowed for remarkable progress in many medical scenarios. Deep learning prediction models often require 105-107 examples. It is currently unknown whether deep learning can also enhance predictions of symptoms post-stroke in real-world samples of stroke patients that are often several magnitudes smaller. Such stroke outcome predictions however could be particularly instrumental in guiding acute clinical and rehabilitation care decisions. We here compared the capacities of classically used linear and novel deep learning algorithms in their prediction of stroke severity. Our analyses relied on a total of 1430 patients assembled from the MRI-Genetics Interface Exploration collaboration and a Massachusetts General Hospital-based study. The outcome of interest was National Institutes of Health Stroke Scale-based stroke severity in the acute phase after ischaemic stroke onset, which we predict by means of MRI-derived lesion location. We automatically derived lesion segmentations from diffusion-weighted clinical MRI scans, performed spatial normalization and included a principal component analysis step, retaining 95% of the variance of the original data. We then repeatedly separated a train, validation and test set to investigate the effects of sample size; we subsampled the train set to 100, 300 and 900 and trained the algorithms to predict the stroke severity score for each sample size with regularized linear regression and an eight-layered neural network. We selected hyperparameters on the validation set. We evaluated model performance based on the explained variance (R2) in the test set. While linear regression performed significantly better for a sample size of 100 patients, deep learning started to significantly outperform linear regression when trained on 900 patients. Average prediction performance improved by ∼20% when increasing the sample size 9× [maximum for 100 patients: 0.279 ± 0.005 (R2, 95% confidence interval), 900 patients: 0.337 ± 0.006]. In summary, for sample sizes of 900 patients, deep learning showed a higher prediction performance than typically employed linear methods. These findings suggest the existence of non-linear relationships between lesion location and stroke severity that can be utilized for an improved prediction performance for larger sample sizes.

2.
J Neurol ; 270(5): 2631-2639, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36786861

RESUMO

BACKGROUND: (1) Description of clinical and cranial MRI features in the original Pontine Autosomal Dominant Microangiopathy with Leukoencephalopathy (PADMAL) family and correlation with the segregation analysis of the causative collagen 4A1 gene (COL4A1) variant. (2) Sequence analysis of the COL4A1 miRNA-binding site containing the causative variant in two independent cross-sectional samples of sporadic stroke patients. PATIENTS AND METHODS: Sanger sequencing of the COL4A1 miRNA-binding site in the PADMAL family and 874 sporadic stroke patients. RESULTS: PADMAL shows adult-onset usually between 30 and 50 years of age with initial brainstem-related symptoms most commonly dysarthria, with progression to dementia and tetraparesis. Radiologically pontine lacunes are followed by supratentorial white matter involvement. Radiological onset may precede clinical symptoms. We found no variants in the COL4A1 miRNA-binding site of sporadic stroke patients. CONCLUSION: Our results allow an early diagnosis of PADMAL based on cranial MRI, clinical signs, and confirmatory sequencing of the COL4A1 miRNA-29-binding site. COL4A1 miRNA-29-binding site variants do not contribute to a sizeable proportion of sporadic stroke.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Leucoencefalopatias , MicroRNAs , Acidente Vascular Cerebral , Adulto , Humanos , Doenças de Pequenos Vasos Cerebrais/complicações , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/genética , Colágeno Tipo IV/genética , Estudos Transversais , Leucoencefalopatias/diagnóstico por imagem , Leucoencefalopatias/genética , Mutação , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/genética
3.
Hum Brain Mapp ; 44(4): 1579-1592, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36440953

RESUMO

This study aimed to investigate the influence of stroke lesions in predefined highly interconnected (rich-club) brain regions on functional outcome post-stroke, determine their spatial specificity and explore the effects of biological sex on their relevance. We analyzed MRI data recorded at index stroke and ~3-months modified Rankin Scale (mRS) data from patients with acute ischemic stroke enrolled in the multisite MRI-GENIE study. Spatially normalized structural stroke lesions were parcellated into 108 atlas-defined bilateral (sub)cortical brain regions. Unfavorable outcome (mRS > 2) was modeled in a Bayesian logistic regression framework. Effects of individual brain regions were captured as two compound effects for (i) six bilateral rich club and (ii) all further non-rich club regions. In spatial specificity analyses, we randomized the split into "rich club" and "non-rich club" regions and compared the effect of the actual rich club regions to the distribution of effects from 1000 combinations of six random regions. In sex-specific analyses, we introduced an additional hierarchical level in our model structure to compare male and female-specific rich club effects. A total of 822 patients (age: 64.7[15.0], 39% women) were analyzed. Rich club regions had substantial relevance in explaining unfavorable functional outcome (mean of posterior distribution: 0.08, area under the curve: 0.8). In particular, the rich club-combination had a higher relevance than 98.4% of random constellations. Rich club regions were substantially more important in explaining long-term outcome in women than in men. All in all, lesions in rich club regions were associated with increased odds of unfavorable outcome. These effects were spatially specific and more pronounced in women.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Teorema de Bayes , Encéfalo , AVC Isquêmico/diagnóstico por imagem , AVC Isquêmico/patologia , Modelos Neurológicos
4.
Neurology ; 100(8): e822-e833, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36443016

RESUMO

BACKGROUND AND OBJECTIVES: While chronological age is one of the most influential determinants of poststroke outcomes, little is known of the impact of neuroimaging-derived biological "brain age." We hypothesized that radiomics analyses of T2-FLAIR images texture would provide brain age estimates and that advanced brain age of patients with stroke will be associated with cardiovascular risk factors and worse functional outcomes. METHODS: We extracted radiomics from T2-FLAIR images acquired during acute stroke clinical evaluation. Brain age was determined from brain parenchyma radiomics using an ElasticNet linear regression model. Subsequently, relative brain age (RBA), which expresses brain age in comparison with chronological age-matched peers, was estimated. Finally, we built a linear regression model of RBA using clinical cardiovascular characteristics as inputs and a logistic regression model of favorable functional outcomes taking RBA as input. RESULTS: We reviewed 4,163 patients from a large multisite ischemic stroke cohort (mean age = 62.8 years, 42.0% female patients). T2-FLAIR radiomics predicted chronological ages (mean absolute error = 6.9 years, r = 0.81). After adjustment for covariates, RBA was higher and therefore described older-appearing brains in patients with hypertension, diabetes mellitus, a history of smoking, and a history of a prior stroke. In multivariate analyses, age, RBA, NIHSS, and a history of prior stroke were all significantly associated with functional outcome (respective adjusted odds ratios: 0.58, 0.76, 0.48, 0.55; all p-values < 0.001). Moreover, the negative effect of RBA on outcome was especially pronounced in minor strokes. DISCUSSION: T2-FLAIR radiomics can be used to predict brain age and derive RBA. Older-appearing brains, characterized by a higher RBA, reflect cardiovascular risk factor accumulation and are linked to worse outcomes after stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Encéfalo/diagnóstico por imagem , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/complicações , AVC Isquêmico/complicações , Imageamento por Ressonância Magnética/métodos , Acidente Vascular Cerebral/complicações
5.
Neurology ; 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36240095

RESUMO

BACKGROUND AND OBJECTIVES: Current genome-wide association studies of ischemic stroke have focused primarily on late onset disease. As a complement to these studies, we sought to identifythe contribution of common genetic variants to risk of early onset ischemic stroke. METHODS: We performed a meta-analysis of genome-wide association studies of early onset stroke (EOS), ages 18-59, using individual level data or summary statistics in 16,730 cases and 599,237 non-stroke controls obtained across 48 different studies. We further compared effect sizes at associated loci between EOS and late onset stroke (LOS) and compared polygenic risk scores for venous thromboembolism between EOS and LOS. RESULTS: We observed genome-wide significant associations of EOS with two variants in ABO, a known stroke locus. These variants tag blood subgroups O1 and A1, and the effect sizes of both variants were significantly larger in EOS compared to LOS. The odds ratio (OR) for rs529565, tagging O1, 0.88 (95% CI: 0.85-0.91) in EOS vs 0.96 (95% CI: 0.92-1.00) in LOS, and the OR for rs635634, tagging A1, was 1.16 (1.11-1.21) for EOS vs 1.05 (0.99-1.11) in LOS; p-values for interaction = 0.001 and 0.005, respectively. Using polygenic risk scores, we observed that greater genetic risk for venous thromboembolism, another prothrombotic condition, was more strongly associated with EOS compared to LOS (p=0.008). DISCUSSION: The ABO locus, genetically predicted blood group A, and higher genetic propensity for venous thrombosis are more strongly associated with EOS than with LOS, supporting a stronger role of prothrombotic factors in EOS.

6.
Front Neurosci ; 16: 994458, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090258

RESUMO

Background purpose: A substantial number of patients with acute ischemic stroke (AIS) experience multiple acute lesions (MAL). We here aimed to scrutinize MAL in a large radiologically deep-phenotyped cohort. Materials and methods: Analyses relied upon imaging and clinical data from the international MRI-GENIE study. Imaging data comprised both Fluid-attenuated inversion recovery (FLAIR) for white matter hyperintensity (WMH) burden estimation and diffusion-weighted imaging (DWI) sequences for the assessment of acute stroke lesions. The initial step featured the systematic evaluation of occurrences of MAL within one and several vascular supply territories. Associations between MAL and important imaging and clinical characteristics were subsequently determined. The interaction effect between single and multiple lesion status and lesion volume was estimated by means of Bayesian hierarchical regression modeling for both stroke severity and functional outcome. Results: We analyzed 2,466 patients (age = 63.4 ± 14.8, 39% women), 49.7% of which presented with a single lesion. Another 37.4% experienced MAL in a single vascular territory, while 12.9% featured lesions in multiple vascular territories. Within most territories, MAL occurred as frequently as single lesions (ratio ∼1:1). Only the brainstem region comprised fewer patients with MAL (ratio 1:4). Patients with MAL presented with a significantly higher lesion volume and acute NIHSS (7.7 vs. 1.7 ml and 4 vs. 3, p FDR < 0.001). In contrast, patients with a single lesion were characterized by a significantly higher WMH burden (6.1 vs. 5.3 ml, p FDR = 0.048). Functional outcome did not differ significantly between patients with single versus multiple lesions. Bayesian analyses suggested that the association between lesion volume and stroke severity between single and multiple lesions was the same in case of anterior circulation stroke. In case of posterior circulation stroke, lesion volume was linked to a higher NIHSS only among those with MAL. Conclusion: Multiple lesions, especially those within one vascular territory, occurred more frequently than previously reported. Overall, multiple lesions were distinctly linked to a higher acute stroke severity, a higher total DWI lesion volume and a lower WMH lesion volume. In posterior circulation stroke, lesion volume was linked to a higher stroke severity in multiple lesions only.

7.
Neurology ; 99(13): e1364-e1379, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-35803717

RESUMO

BACKGROUND AND OBJECTIVES: To examine whether high white matter hyperintensity (WMH) burden is associated with greater stroke severity and worse functional outcomes in lesion pattern-specific ways. METHODS: MR neuroimaging and NIH Stroke Scale data at index stroke and the modified Rankin Scale (mRS) score at 3-6 months after stroke were obtained from the MRI-Genetics Interface Exploration study of patients with acute ischemic stroke (AIS). Individual WMH volume was automatically derived from fluid-attenuated inversion recovery images. Stroke lesions were automatically segmented from diffusion-weighted imaging (DWI) images, parcellated into atlas-defined brain regions and further condensed to 10 lesion patterns via machine learning-based dimensionality reduction. Stroke lesion effects on AIS severity and unfavorable outcomes (mRS score >2) were modeled within purpose-built Bayesian linear and logistic regression frameworks. Interaction effects between stroke lesions and a high vs low WMH burden were integrated via hierarchical model structures. Models were adjusted for age, age2, sex, total DWI lesion and WMH volumes, and comorbidities. Data were split into derivation and validation cohorts. RESULTS: A total of 928 patients with AIS contributed to acute stroke severity analyses (age: 64.8 [14.5] years, 40% women) and 698 patients to long-term functional outcome analyses (age: 65.9 [14.7] years, 41% women). Stroke severity was mainly explained by lesions focused on bilateral subcortical and left hemispherically pronounced cortical regions across patients with both a high and low WMH burden. Lesions centered on left-hemispheric insular, opercular, and inferior frontal regions and lesions affecting right-hemispheric temporoparietal regions had more pronounced effects on stroke severity in case of high compared with low WMH burden. Unfavorable outcomes were predominantly explained by lesions in bilateral subcortical regions. In difference to the lesion location-specific WMH effects on stroke severity, higher WMH burden increased the odds of unfavorable outcomes independent of lesion location. DISCUSSION: Higher WMH burden may be associated with an increased stroke severity in case of stroke lesions involving left-hemispheric insular, opercular, and inferior frontal regions (potentially linked to language functions) and right-hemispheric temporoparietal regions (potentially linked to attention). Our findings suggest that patients with specific constellations of WMH burden and lesion locations may have greater benefits from acute recanalization treatments. Future clinical studies are warranted to systematically assess this assumption and guide more tailored treatment decisions.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Leucoaraiose , Acidente Vascular Cerebral , Substância Branca , Idoso , Teorema de Bayes , Feminino , Humanos , Leucoaraiose/patologia , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Substância Branca/patologia
8.
Brain Commun ; 4(2): fcac020, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35282166

RESUMO

Stroke represents a considerable burden of disease for both men and women. However, a growing body of literature suggests clinically relevant sex differences in the underlying causes, presentations and outcomes of acute ischaemic stroke. In a recent study, we reported sex divergences in lesion topographies: specific to women, acute stroke severity was linked to lesions in the left-hemispheric posterior circulation. We here determined whether these sex-specific brain manifestations also affect long-term outcomes. We relied on 822 acute ischaemic patients [age: 64.7 (15.0) years, 39% women] originating from the multi-centre MRI-GENIE study to model unfavourable outcomes (modified Rankin Scale >2) based on acute neuroimaging data in a Bayesian hierarchical framework. Lesions encompassing bilateral subcortical nuclei and left-lateralized regions in proximity to the insula explained outcomes across men and women (area under the curve = 0.81). A pattern of left-hemispheric posterior circulation brain regions, combining left hippocampus, precuneus, fusiform and lingual gyrus, occipital pole and latero-occipital cortex, showed a substantially higher relevance in explaining functional outcomes in women compared to men [mean difference of Bayesian posterior distributions (men - women) = -0.295 (90% highest posterior density interval = -0.556 to -0.068)]. Once validated in prospective studies, our findings may motivate a sex-specific approach to clinical stroke management and hold the promise of enhancing outcomes on a population level.

9.
Front Neurol ; 12: 700616, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566844

RESUMO

Objective: To personalize the prognostication of post-stroke outcome using MRI-detected cerebrovascular pathology, we sought to investigate the association between the excessive white matter hyperintensity (WMH) burden unaccounted for by the traditional stroke risk profile of individual patients and their long-term functional outcomes after a stroke. Methods: We included 890 patients who survived after an acute ischemic stroke from the MRI-Genetics Interface Exploration (MRI-GENIE) study, for whom data on vascular risk factors (VRFs), including age, sex, atrial fibrillation, diabetes mellitus, hypertension, coronary artery disease, smoking, prior stroke history, as well as acute stroke severity, 3- to-6-month modified Rankin Scale score (mRS), WMH, and brain volumes, were available. We defined the unaccounted WMH (uWMH) burden via modeling of expected WMH burden based on the VRF profile of each individual patient. The association of uWMH and mRS score was analyzed by linear regression analysis. The odds ratios of patients who achieved full functional independence (mRS < 2) in between trichotomized uWMH burden groups were calculated by pair-wise comparisons. Results: The expected WMH volume was estimated with respect to known VRFs. The uWMH burden was associated with a long-term functional outcome (ß = 0.104, p < 0.01). Excessive uWMH burden significantly reduced the odds of achieving full functional independence after a stroke compared to the low and average uWMH burden [OR = 0.4, 95% CI: (0.25, 0.63), p < 0.01 and OR = 0.61, 95% CI: (0.42, 0.87), p < 0.01, respectively]. Conclusion: The excessive amount of uWMH burden unaccounted for by the traditional VRF profile was associated with worse post-stroke functional outcomes. Further studies are needed to evaluate a lifetime brain injury reflected in WMH unrelated to the VRF profile of a patient as an important factor for stroke recovery and a plausible indicator of brain health.

10.
Front Neurosci ; 15: 691244, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34321995

RESUMO

OBJECTIVE: Neuroimaging measurements of brain structural integrity are thought to be surrogates for brain health, but precise assessments require dedicated advanced image acquisitions. By means of quantitatively describing conventional images, radiomic analyses hold potential for evaluating brain health. We sought to: (1) evaluate radiomics to assess brain structural integrity by predicting white matter hyperintensities burdens (WMH) and (2) uncover associations between predictive radiomic features and clinical phenotypes. METHODS: We analyzed a multi-site cohort of 4,163 acute ischemic strokes (AIS) patients with T2-FLAIR MR images with total brain and WMH segmentations. Radiomic features were extracted from normal-appearing brain tissue (brain mask-WMH mask). Radiomics-based prediction of personalized WMH burden was done using ElasticNet linear regression. We built a radiomic signature of WMH with stable selected features predictive of WMH burden and then related this signature to clinical variables using canonical correlation analysis (CCA). RESULTS: Radiomic features were predictive of WMH burden (R 2 = 0.855 ± 0.011). Seven pairs of canonical variates (CV) significantly correlated the radiomics signature of WMH and clinical traits with respective canonical correlations of 0.81, 0.65, 0.42, 0.24, 0.20, 0.15, and 0.15 (FDR-corrected p-values CV 1 - 6 < 0.001, p-value CV 7 = 0.012). The clinical CV1 was mainly influenced by age, CV2 by sex, CV3 by history of smoking and diabetes, CV4 by hypertension, CV5 by atrial fibrillation (AF) and diabetes, CV6 by coronary artery disease (CAD), and CV7 by CAD and diabetes. CONCLUSION: Radiomics extracted from T2-FLAIR images of AIS patients capture microstructural damage of the cerebral parenchyma and correlate with clinical phenotypes, suggesting different radiographical textural abnormalities per cardiovascular risk profile. Further research could evaluate radiomics to predict the progression of WMH and for the follow-up of stroke patients' brain health.

11.
Nat Commun ; 12(1): 3289, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078897

RESUMO

Acute ischemic stroke affects men and women differently. In particular, women are often reported to experience higher acute stroke severity than men. We derived a low-dimensional representation of anatomical stroke lesions and designed a Bayesian hierarchical modeling framework tailored to estimate possible sex differences in lesion patterns linked to acute stroke severity (National Institute of Health Stroke Scale). This framework was developed in 555 patients (38% female). Findings were validated in an independent cohort (n = 503, 41% female). Here, we show brain lesions in regions subserving motor and language functions help explain stroke severity in both men and women, however more widespread lesion patterns are relevant in female patients. Higher stroke severity in women, but not men, is associated with left hemisphere lesions in the vicinity of the posterior circulation. Our results suggest there are sex-specific functional cerebral asymmetries that may be important for future investigations of sex-stratified approaches to management of acute ischemic stroke.


Assuntos
Tronco Encefálico/patologia , AVC Isquêmico/patologia , Córtex Sensório-Motor/patologia , Tálamo/patologia , Idoso , Idoso de 80 Anos ou mais , Teorema de Bayes , Mapeamento Encefálico , Tronco Encefálico/irrigação sanguínea , Tronco Encefálico/diagnóstico por imagem , Revascularização Cerebral/métodos , Estudos de Coortes , Feminino , Humanos , Processamento de Imagem Assistida por Computador , AVC Isquêmico/diagnóstico por imagem , AVC Isquêmico/terapia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Córtex Sensório-Motor/irrigação sanguínea , Córtex Sensório-Motor/diagnóstico por imagem , Índice de Gravidade de Doença , Fatores Sexuais , Tálamo/irrigação sanguínea , Tálamo/diagnóstico por imagem , Resultado do Tratamento
12.
Hum Brain Mapp ; 42(7): 2278-2291, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33650754

RESUMO

The aim of the current study was to explore the whole-brain dynamic functional connectivity patterns in acute ischemic stroke (AIS) patients and their relation to short and long-term stroke severity. We investigated resting-state functional MRI-based dynamic functional connectivity of 41 AIS patients two to five days after symptom onset. Re-occurring dynamic connectivity configurations were obtained using a sliding window approach and k-means clustering. We evaluated differences in dynamic patterns between three NIHSS-stroke severity defined groups (mildly, moderately, and severely affected patients). Furthermore, we built Bayesian hierarchical models to evaluate the predictive capacity of dynamic connectivity and examine the interrelation with clinical measures, such as white matter hyperintensity lesions. Finally, we established correlation analyses between dynamic connectivity and AIS severity as well as 90-day neurological recovery (ΔNIHSS). We identified three distinct dynamic connectivity configurations acutely post-stroke. More severely affected patients spent significantly more time in a configuration that was characterized by particularly strong connectivity and isolated processing of functional brain domains (three-level ANOVA: p < .05, post hoc t tests: p < .05, FDR-corrected). Configuration-specific time estimates possessed predictive capacity of stroke severity in addition to the one of clinical measures. Recovery, as indexed by the realized change of the NIHSS over time, was significantly linked to the dynamic connectivity between bilateral intraparietal lobule and left angular gyrus (Pearson's r = -.68, p = .003, FDR-corrected). Our findings demonstrate transiently increased isolated information processing in multiple functional domains in case of severe AIS. Dynamic connectivity involving default mode network components significantly correlated with recovery in the first 3 months poststroke.


Assuntos
Conectoma , AVC Isquêmico/diagnóstico , AVC Isquêmico/fisiopatologia , Avaliação de Resultados em Cuidados de Saúde , Recuperação de Função Fisiológica/fisiologia , Idoso , Feminino , Humanos , AVC Isquêmico/diagnóstico por imagem , AVC Isquêmico/terapia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença
13.
Int J Stroke ; 16(2): 184-191, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-31847795

RESUMO

BACKGROUND: White matter hyperintensity of presumed vascular origin is a risk factor for poor stroke outcomes. In patients with acute ischemic stroke, however, the in vivo mechanisms of white matter microstructural injury are less clear. AIMS: To characterize the directional diffusivity components in normal-appearing white matter and white matter hyperintensity in acute ischemic stroke patients. METHODS: A retrospective analysis was performed on a cohort of patients with acute ischemic stroke and brain magnetic resonance imaging with diffusion tensor imaging sequences acquired within 48 h of admission. White matter hyperintensity volume was measured in a semi-automated manner. Median fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity values were calculated within normal-appearing white matter and white matter hyperintensity in the hemisphere contralateral to the acute infarct. Linear regression analysis was performed to evaluate predictors of white matter hyperintensity volume and normal-appearing white matter diffusivity metrics. RESULTS: In 319 patients, mean age was 64.9 ± 15.9 years. White matter hyperintensity volume was 6.33 cm3 (interquartile range 3.0-12.6 cm3). Axial and radial diffusivity were significantly increased in white matter hyperintensity compared to normal-appearing white matter. In multivariable linear regression, age (ß = 0.20, P = 0.003) and normal-appearing white matter axial diffusivity (ß = 37.9, P < 0.001) were independently associated with white matter hyperintensity volume. Subsequent analysis demonstrated that increasing age (ß = 0.004, P < 0.001) and admission diastolic blood pressure (ß = 0.001, P = 0.02) were independent predictors of normal-appearing white matter axial diffusivity in multivariable linear regression. CONCLUSIONS: Normal-appearing white matter axial diffusivity increases with age and is an independent predictor of white matter hyperintensity volume in acute ischemic stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Substância Branca , Idoso , Idoso de 80 Anos ou mais , Isquemia Encefálica/complicações , Isquemia Encefálica/diagnóstico por imagem , Imagem de Tensor de Difusão , Humanos , Pessoa de Meia-Idade , Estudos Retrospectivos , Acidente Vascular Cerebral/diagnóstico por imagem , Substância Branca/diagnóstico por imagem
14.
Front Neurol ; 11: 588883, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193055

RESUMO

White matter hyperintensities of presumed vascular origin (WMH) are a prevalent form of cerebral small-vessel disease and an important risk factor for post-stroke cognitive dysfunction. Despite this prevalence, it is not well understood how WMH contributes to post-stroke cognitive dysfunction. Preliminary findings suggest that increasing WMH volume is associated with total hippocampal volume in chronic stroke patients. The hippocampus, however, is a complex structure with distinct subfields that have varying roles in the function of the hippocampal circuitry and unique anatomical projections to different brain regions. For these reasons, an investigation into the relationship between WMH and hippocampal subfield volume may further delineate how WMH predispose to post-stroke cognitive dysfunction. In a prospective study of acute ischemic stroke patients with moderate/severe WMH burden, we assessed the relationship between quantitative WMH burden and hippocampal subfield volumes. Patients underwent a 3T MRI brain within 2-5 days of stroke onset. Total WMH volume was calculated in a semi-automated manner. Mean cortical thickness and hippocampal volumes were measured in the contralesional hemisphere. Total and subfield hippocampal volumes were measured using an automated, high-resolution, ex vivo computational atlas. Linear regression analyses were performed for predictors of total and subfield hippocampal volumes. Forty patients with acute ischemic stroke and moderate/severe white matter hyperintensity burden were included in this analysis. Median WMH volume was 9.0 cm3. Adjusting for intracranial volume and stroke laterality, age (ß = -3.7, P < 0.001), hypertension (ß = -44.7, P = 0.04), WMH volume (ß = -0.89, P = 0.049), and mean cortical thickness (ß = 286.2, P = 0.006) were associated with total hippocampal volume. In multivariable analysis, age (ß = -3.3, P < 0.001) and cortical thickness (ß = 205.2, P = 0.028) remained independently associated with total hippocampal volume. In linear regression for predictors of hippocampal subfield volume, increasing WMH volume was associated with decreased hippocampal-amygdala transition area volume (ß = -0.04, P = 0.001). These finding suggest that in ischemic stroke patients, increased WMH burden is associated with selective hippocampal subfield degeneration in the hippocampal-amygdala transition area.

15.
Neurology ; 95(24): e3331-e3343, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-32913026

RESUMO

OBJECTIVE: To identify common genetic variants associated with the presence of brain microbleeds (BMBs). METHODS: We performed genome-wide association studies in 11 population-based cohort studies and 3 case-control or case-only stroke cohorts. Genotypes were imputed to the Haplotype Reference Consortium or 1000 Genomes reference panel. BMBs were rated on susceptibility-weighted or T2*-weighted gradient echo MRI sequences, and further classified as lobar or mixed (including strictly deep and infratentorial, possibly with lobar BMB). In a subset, we assessed the effects of APOE ε2 and ε4 alleles on BMB counts. We also related previously identified cerebral small vessel disease variants to BMBs. RESULTS: BMBs were detected in 3,556 of the 25,862 participants, of which 2,179 were strictly lobar and 1,293 mixed. One locus in the APOE region reached genome-wide significance for its association with BMB (lead single nucleotide polymorphism rs769449; odds ratio [OR]any BMB [95% confidence interval (CI)] 1.33 [1.21-1.45]; p = 2.5 × 10-10). APOE ε4 alleles were associated with strictly lobar (OR [95% CI] 1.34 [1.19-1.50]; p = 1.0 × 10-6) but not with mixed BMB counts (OR [95% CI] 1.04 [0.86-1.25]; p = 0.68). APOE ε2 alleles did not show associations with BMB counts. Variants previously related to deep intracerebral hemorrhage and lacunar stroke, and a risk score of cerebral white matter hyperintensity variants, were associated with BMB. CONCLUSIONS: Genetic variants in the APOE region are associated with the presence of BMB, most likely due to the APOE ε4 allele count related to a higher number of strictly lobar BMBs. Genetic predisposition to small vessel disease confers risk of BMB, indicating genetic overlap with other cerebral small vessel disease markers.


Assuntos
Apolipoproteína E4/genética , Apolipoproteínas E/genética , Hemorragia Cerebral/genética , Hemorragia Cerebral/patologia , Doenças de Pequenos Vasos Cerebrais/genética , Estudo de Associação Genômica Ampla , Substância Branca/patologia , Idoso , Idoso de 80 Anos ou mais , Alelos , Apolipoproteína E2/genética , Estudos de Casos e Controles , Hemorragia Cerebral/diagnóstico por imagem , Hemorragia Cerebral/epidemiologia , Doenças de Pequenos Vasos Cerebrais/epidemiologia , Estudos de Coortes , Feminino , Predisposição Genética para Doença , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Risco , Substância Branca/diagnóstico por imagem
16.
Front Neurol ; 11: 577, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670186

RESUMO

Background: Magnetic resonance imaging (MRI) serves as a cornerstone in defining stroke phenotype and etiological subtype through examination of ischemic stroke lesion appearance and is therefore an essential tool in linking genetic traits and stroke. Building on baseline MRI examinations from the centralized and structured radiological assessments of ischemic stroke patients in the Stroke Genetics Network, the results of the MRI-Genetics Interface Exploration (MRI-GENIE) study are described in this work. Methods: The MRI-GENIE study included patients with symptoms caused by ischemic stroke (N = 3,301) from 12 international centers. We established and used a structured reporting protocol for all assessments. Two neuroradiologists, using a blinded evaluation protocol, independently reviewed the baseline diffusion-weighted images (DWIs) and magnetic resonance angiography images to determine acute lesion and vascular occlusion characteristics. Results: In this systematic multicenter radiological analysis of clinical MRI from 3,301 acute ischemic stroke patients according to a structured prespecified protocol, we identified that anterior circulation infarcts were most prevalent (67.4%), that infarcts in the middle cerebral artery (MCA) territory were the most common, and that the majority of large artery occlusions 0 to 48 h from ictus were in the MCA territory. Multiple acute lesions in one or several vascular territories were common (11%). Of 2,238 patients with unilateral DWI lesions, 52.6% had left-sided infarct lateralization (P = 0.013 for χ2 test). Conclusions: This large-scale analysis of a multicenter MRI-based cohort of AIS patients presents a unique imaging framework facilitating the relationship between imaging and genetics for advancing the knowledge of genetic traits linked to ischemic stroke.

17.
Cerebrovasc Dis ; 49(4): 419-426, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32694259

RESUMO

INTRODUCTION: White matter hyperintensity (WMH) burden is a critically important cerebrovascular phenotype related to the diagnosis and prognosis of acute ischemic stroke. The effect of WMH burden on functional outcome in large vessel occlusion (LVO) stroke has only been sparsely assessed, and direct LVO and non-LVO comparisons are currently lacking. MATERIAL AND METHODS: We reviewed acute ischemic stroke patients admitted between 2009 and 2017 at a large healthcare system in the USA. Patients with LVO were identified and clinical characteristics, including 90-day functional outcomes, were assessed. Clinical brain MRIs obtained at the time of the stroke underwent quantification of WMH using a fully automated algorithm. The pipeline incorporated automated brain extraction, intensity normalization, and WMH segmentation. RESULTS: A total of 1,601 acute ischemic strokes with documented 90-day mRS were identified, including 353 (22%) with LVO. Among those strokes, WMH volume was available in 1,285 (80.3%) who had a brain MRI suitable for WMH quantification. Increasing WMH volume from 0 to 4 mL, age, female gender, a number of stroke risk factors, presence of LVO, and higher NIHSS at presentation all decreased the odds for a favorable outcome. Increasing WMH above 4 mL, however, was not associated with decreasing odds of favorable outcome. While WMH volume was associated with functional outcome in non-LVO stroke (p = 0.0009), this association between WMH and functional status was not statistically significant in the complete case multivariable model of LVO stroke (p = 0.0637). CONCLUSION: The burden of WMH has effects on 90-day functional outcome after LVO and non-LVO strokes. Particularly, increases from no measurable WMH to 4 mL of WMH correlate strongly with the outcome. Whether this relationship of increasing WMH to worse outcome is more pronounced in non-LVO than LVO strokes deserves additional investigation.


Assuntos
Isquemia Encefálica/terapia , Leucoencefalopatias/diagnóstico por imagem , Imageamento por Ressonância Magnética , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral/terapia , Idoso , Idoso de 80 Anos ou mais , Isquemia Encefálica/complicações , Isquemia Encefálica/diagnóstico , Isquemia Encefálica/fisiopatologia , Avaliação da Deficiência , Feminino , Humanos , Leucoencefalopatias/complicações , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Recuperação de Função Fisiológica , Sistema de Registros , Estudos Retrospectivos , Fatores de Risco , Índice de Gravidade de Doença , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/fisiopatologia , Fatores de Tempo , Resultado do Tratamento
18.
Neurology ; 95(1): e79-e88, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32493718

RESUMO

OBJECTIVE: To examine etiologic stroke subtypes and vascular risk factor profiles and their association with white matter hyperintensity (WMH) burden in patients hospitalized for acute ischemic stroke (AIS). METHODS: For the MRI Genetics Interface Exploration (MRI-GENIE) study, we systematically assembled brain imaging and phenotypic data for 3,301 patients with AIS. All cases underwent standardized web tool-based stroke subtyping with the Causative Classification of Ischemic Stroke (CCS). WMH volume (WMHv) was measured on T2 brain MRI scans of 2,529 patients with a fully automated deep-learning trained algorithm. Univariable and multivariable linear mixed-effects modeling was carried out to investigate the relationship of vascular risk factors with WMHv and CCS subtypes. RESULTS: Patients with AIS with large artery atherosclerosis, major cardioembolic stroke, small artery occlusion (SAO), other, and undetermined causes of AIS differed significantly in their vascular risk factor profile (all p < 0.001). Median WMHv in all patients with AIS was 5.86 cm3 (interquartile range 2.18-14.61 cm3) and differed significantly across CCS subtypes (p < 0.0001). In multivariable analysis, age, hypertension, prior stroke, smoking (all p < 0.001), and diabetes mellitus (p = 0.041) were independent predictors of WMHv. When adjusted for confounders, patients with SAO had significantly higher WMHv compared to those with all other stroke subtypes (p < 0.001). CONCLUSION: In this international multicenter, hospital-based cohort of patients with AIS, we demonstrate that vascular risk factor profiles and extent of WMH burden differ by CCS subtype, with the highest lesion burden detected in patients with SAO. These findings further support the small vessel hypothesis of WMH lesions detected on brain MRI of patients with ischemic stroke.


Assuntos
Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/patologia , Substância Branca/patologia , Idoso , Idoso de 80 Anos ou mais , Arteriopatias Oclusivas/complicações , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/etiologia , Isquemia Encefálica/patologia , Aprendizado Profundo , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco , Acidente Vascular Cerebral/diagnóstico por imagem , Substância Branca/diagnóstico por imagem
19.
Mayo Clin Proc ; 95(5): 955-965, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32370856

RESUMO

OBJECTIVE: To determine whether brain volume is associated with functional outcome after acute ischemic stroke (AIS). PATIENTS AND METHODS: This study was conducted between July 1, 2014, and March 16, 2019. We analyzed cross-sectional data of the multisite, international hospital-based MRI-Genetics Interface Exploration study with clinical brain magnetic resonance imaging obtained on admission for index stroke and functional outcome assessment. Poststroke outcome was determined using the modified Rankin Scale score (0-6; 0 = asymptomatic; 6 = death) recorded between 60 and 190 days after stroke. Demographic characteristics and other clinical variables including acute stroke severity (measured as National Institutes of Health Stroke Scale score), vascular risk factors, and etiologic stroke subtypes (Causative Classification of Stroke system) were recorded during index admission. RESULTS: Utilizing the data from 912 patients with AIS (mean ± SD age, 65.3±14.5 years; male, 532 [58.3%]; history of smoking, 519 [56.9%]; hypertension, 595 [65.2%]) in a generalized linear model, brain volume (per 155.1 cm3) was associated with age (ß -0.3 [per 14.4 years]), male sex (ß 1.0), and prior stroke (ß -0.2). In the multivariable outcome model, brain volume was an independent predictor of modified Rankin Scale score (ß -0.233), with reduced odds of worse long-term functional outcomes (odds ratio, 0.8; 95% CI, 0.7-0.9) in those with larger brain volumes. CONCLUSION: Larger brain volume quantified on clinical magnetic resonance imaging of patients with AIS at the time of stroke purports a protective mechanism. The role of brain volume as a prognostic, protective biomarker has the potential to forge new areas of research and advance current knowledge of the mechanisms of poststroke recovery.


Assuntos
Isquemia Encefálica/fisiopatologia , Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Acidente Vascular Cerebral/fisiopatologia , Idoso , Isquemia Encefálica/complicações , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/etiologia
20.
Med Image Anal ; 63: 101698, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32339896

RESUMO

Registration is a core component of many imaging pipelines. In case of clinical scans, with lower resolution and sometimes substantial motion artifacts, registration can produce poor results. Visual assessment of registration quality in large clinical datasets is inefficient. In this work, we propose to automatically assess the quality of registration to an atlas in clinical FLAIR MRI scans of the brain. The method consists of automatically segmenting the ventricles of a given scan using a neural network, and comparing the segmentation to the atlas ventricles propagated to image space. We used the proposed method to improve clinical image registration to a general atlas by computing multiple registrations - one directly to the general atlas and others via different age-specific atlases - and then selecting the registration that yielded the highest ventricle overlap. Finally, as an example application of the complete pipeline, a voxelwise map of white matter hyperintensity burden was computed using only the scans with registration quality above a predefined threshold. Methods were evaluated in a single-site dataset of more than 1000 scans, as well as a multi-center dataset comprising 142 clinical scans from 12 sites. The automated ventricle segmentation reached a Dice coefficient with manual annotations of 0.89 in the single-site dataset, and 0.83 in the multi-center dataset. Registration via age-specific atlases could improve ventricle overlap compared to a direct registration to the general atlas (Dice similarity coefficient increase up to 0.15). Experiments also showed that selecting scans with the registration quality assessment method could improve the quality of average maps of white matter hyperintensity burden, instead of using all scans for the computation of the white matter hyperintensity map. In this work, we demonstrated the utility of an automated tool for assessing image registration quality in clinical scans. This image quality assessment step could ultimately assist in the translation of automated neuroimaging pipelines to the clinic.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Artefatos , Encéfalo/diagnóstico por imagem , Humanos , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...